Exercise 2.5.3

Consider the equation $\dot{x}=r x+x^{3}$, where $r>0$ is fixed. Show that $x(t) \rightarrow \pm \infty$ in finite time, starting from any initial condition $x_{0} \neq 0$.

Solution

Show that $x(t)$ blows up in finite time by solving the initial value problem.

$$
\frac{d x}{d t}=r x+x^{3}, \quad x(0)=x_{0} \neq 0, \quad r>0
$$

Separate variables.

$$
\frac{d x}{r x+x^{3}}=d t
$$

Integrate both sides.

$$
\int^{x} \frac{d z}{r z+z^{3}}=t+C
$$

Use partial fraction decomposition on the left side.

$$
\begin{gathered}
\int^{x} \frac{d z}{z\left(r+z^{2}\right)}=t+C \\
\int^{x}\left[\frac{1}{r z}-\frac{z}{r\left(r+z^{2}\right)}\right] d z=t+C \\
\frac{1}{r}\left(\int^{x} \frac{d z}{z}-\int^{x} \frac{z}{r+z^{2}} d z\right)=t+C
\end{gathered}
$$

Make the following substitution in the second integral.

$$
\begin{aligned}
u & =r+z^{2} \\
d u & =2 z d z \quad \rightarrow \quad \frac{d u}{2}=z d z
\end{aligned}
$$

Consequently,

$$
\begin{gathered}
\frac{1}{r}\left[\ln |x|-\int^{r+x^{2}} \frac{1}{u}\left(\frac{d u}{2}\right)\right]=t+C \\
\frac{1}{r}\left(\ln |x|-\frac{1}{2} \int^{r+x^{2}} \frac{d u}{u}\right)=t+C \\
\frac{1}{r}\left(\ln |x|-\frac{1}{2} \ln \left|r+x^{2}\right|\right)=t+C \\
\frac{1}{r}\left(\ln |x|-\ln \sqrt{r+x^{2}}\right)=t+C \\
\frac{1}{r} \ln \frac{|x|}{\sqrt{r+x^{2}}}=t+C
\end{gathered}
$$

Apply the initial condition $x(0)=x_{0}$ to determine C.

$$
\frac{1}{r} \ln \frac{\left|x_{0}\right|}{\sqrt{r+x_{0}^{2}}}=0+C \quad \rightarrow \quad C=\frac{1}{r} \ln \frac{\left|x_{0}\right|}{\sqrt{r+x_{0}^{2}}}
$$

So the solution becomes

$$
\begin{aligned}
& \frac{1}{r} \ln \frac{|x|}{\sqrt{r+x^{2}}}=t+\frac{1}{r} \ln \frac{\left|x_{0}\right|}{\sqrt{r+x_{0}^{2}}} \\
& \frac{1}{r}\left(\ln \frac{|x|}{\sqrt{r+x^{2}}}-\ln \frac{\left|x_{0}\right|}{\sqrt{r+x_{0}^{2}}}\right)=t \\
& \frac{1}{r} \ln \frac{|x|}{\sqrt{r+x^{2}}} \frac{\sqrt{r+x_{0}^{2}}}{\left|x_{0}\right|}=t \\
& \ln \frac{|x|}{\sqrt{r+x^{2}}} \frac{\sqrt{r+x_{0}^{2}}}{\left|x_{0}\right|}=r t \\
& \frac{|x|}{\sqrt{r+x^{2}}} \frac{\sqrt{r+x_{0}^{2}}}{\left|x_{0}\right|}=e^{r t} \\
& \frac{x^{2}}{r+x^{2}} \frac{r+x_{0}^{2}}{x_{0}^{2}}=e^{2 r t} \\
& \frac{1}{\frac{r}{x^{2}}+1}=\frac{x_{0}^{2} e^{2 r t}}{r+x_{0}^{2}} \\
& \frac{r}{x^{2}}+1=\frac{r+x_{0}^{2}}{x_{0}^{2} e^{2 r t}} \\
& \frac{r}{x^{2}}=\frac{r+x_{0}^{2}}{x_{0}^{2} e^{2 r t}}-1 \\
& \frac{r}{x^{2}}=\frac{r+x_{0}^{2}-x_{0}^{2} e^{2 r t}}{x_{0}^{2} e^{2 r t}} \\
& \frac{x^{2}}{r}=\frac{x_{0}^{2} e^{2 r t}}{r+x_{0}^{2}-x_{0}^{2} e^{2 r t}} \\
& x^{2}=\frac{r x_{0}^{2} e^{2 r t}}{r+x_{0}^{2}\left(1-e^{2 r t}\right)} .
\end{aligned}
$$

Therefore, taking the square root of both sides,

$$
x(t)= \pm \sqrt{\frac{r x_{0}^{2} e^{2 r t}}{r+x_{0}^{2}\left(1-e^{2 r t}\right)}}
$$

Note that if $x_{0}=0$, then $x(t)=0$; it would take an infinite amount of time for $x(t)$ to blow up.

If $x_{0} \neq 0$, then $x(t)$ blows up when the denominator is zero.

$$
\begin{gathered}
r+x_{0}^{2}\left(1-e^{2 r t}\right)=0 \\
x_{0}^{2}\left(1-e^{2 r t}\right)=-r \\
1-e^{2 r t}=-\frac{r}{x_{0}^{2}} \\
-e^{2 r t}=-\frac{r}{x_{0}^{2}}-1 \\
e^{2 r t}=\frac{r}{x_{0}^{2}}+1 \\
\ln e^{2 r t}=\ln \left(\frac{r}{x_{0}^{2}}+1\right) \\
2 r t=\ln \left(\frac{r}{x_{0}^{2}}+1\right) \\
t=\frac{1}{2 r} \ln \left(\frac{r}{x_{0}^{2}}+1\right)
\end{gathered}
$$

Therefore, $x(t) \rightarrow \pm \infty$ in finite time, starting from any initial condition $x_{0} \neq 0$.

